Formal Stability Analysis of Optical Resonators Muhammad Umair Siddique, Vincent Aravantinos, Sofiène Tahar Hardware Verification Group Electrical and Engineering Department Concordia University Montreal, Quebec, Canada 5th NASA Formal Methods Symposium May 15, 2013 #### Table of contents - 1 Topic & motivation - Formalization of geometrical optics - 3 Stability of optical resonators - Conclusion & future work #### Table of contents - 1 Topic & motivation - 2 Formalization of geometrical optics - 3 Stability of optical resonators - 4 Conclusion & future work #### In a few words - Interactive theorem proving to model optical systems - More precisely: prove the stability of optical resonators # **Concrete example** Optical system: # **Concrete example** #### Optical resonators: # Why optics? - Optics is used more and more in various technologies - Very present in critical applications (aerospace, military, health, etc.) - Complex to verify + it's new and cool to formalize physics # **Geometrical optics** #### Main characteristics: - Light is a ray - "Paraxial" approximation = objects bigger than wavelength ⇒ no diffraction - Fermat principle = use the shortest path #### Additional assumption: ``` Small angles w.r.t. axis (concretely: sin(\theta) \approx \theta) ``` #### Related work - Existing numerical software (e.g., reZonator, LASCAD, CODE V) - Existing computer algebra software (e.g., Optica) - But no existing use of formal methods #### Table of contents - 1 Topic & motivation - 2 Formalization of geometrical optics - 3 Stability of optical resonators - Conclusion & future work #### Formalization outline All the following has to be formalized: - Optical systems - Light and its interaction with systems - Matrix representation of light behavior - Stability analysis 11/28 #### Type definitions: - Free space: refractive index + distance - $\to \mathtt{type}\ \mathtt{free_space} \stackrel{\mathtt{def}}{=} \mathbb{R} \times \mathbb{R}$ - Interface between mediums: planar OR spherical - ightarrow type interface $\stackrel{ ext{def}}{=}$ plane | spherical($\mathbb R$) - Observed ray behaviour: reflected OR transmitted - \rightarrow type behaviour $\stackrel{\text{def}}{=}$ reflected | transmitted - Optical system: list of free space + interface + behaviour - → type optical_system = - (free_space × interface × behaviour) list #### Type definitions: - Free space: refractive index + distance - \rightarrow type free_space $\stackrel{\mathsf{def}}{=} \mathbb{R} \times \mathbb{R}$ - Interface between mediums: planar OR spherical - ightarrow type interface $\stackrel{ ext{def}}{=}$ plane | spherical(\mathbb{R}) - Observed ray behaviour: reflected OR transmitted - ightarrow type behaviour $\stackrel{ ext{def}}{=}$ reflected | transmitted - Optical system: list of free space + interface + behaviour - → type optical_system = - (free_space × interface × behaviour) list #### Type definitions: - Free space: refractive index + distance - ightarrow type free_space $\stackrel{\mathtt{def}}{=} \mathbb{R} \times \mathbb{R}$ - Interface between mediums: planar OR spherical - ightarrow type interface $\stackrel{ ext{def}}{=}$ plane | spherical (\mathbb{R}) - Observed ray behaviour: reflected OR transmitted - \rightarrow type behaviour $\stackrel{\texttt{def}}{=}$ reflected | transmitted - Optical system: list of free space + interface + behaviour - → type optical_system = (free_space × interface × behaviour) list #### Type definitions: - Free space: refractive index + distance - ightarrow type free_space $\stackrel{\mathtt{def}}{=} \mathbb{R} imes \mathbb{R}$ - Interface between mediums: planar OR spherical - ightarrow type interface $\stackrel{ ext{der}}{=}$ plane | spherical($\mathbb R$) - Observed ray behaviour: reflected OR transmitted - → type behaviour = reflected | transmitted - Optical system: list of free space + interface + behaviour - → type optical_system = (free_space × interface × behaviour) list # Formalization of light as a ray (1/3) # Formalization of light as a ray (2/3) #### Type definitions: - Ray at a given point: distance from axis + angle - o type ray_at_point $\stackrel{ ext{def}}{=} \mathbb{R} imes \mathbb{R}$ - Ray course through a whole system: - a ray description for every point of the system - ightarrow type ray $\stackrel{ ext{def}}{=}$ (ray_at_point imes ray_at_point) list # Formalization of light as a ray (2/3) #### Type definitions: - Ray at a given point: distance from axis + angle - ightarrow type ray_at_point $\stackrel{ ext{der}}{=} \mathbb{R} imes \mathbb{R}$ - Ray course through a whole system: - a ray description for every point of the system - \rightarrow type ray $\stackrel{\text{def}}{=}$ (ray_at_point \times ray_at_point) list # Formalization of light as a ray (3/3) Ray in a free space is_valid_ray_at_free_space (y_0, θ_0) : ray_at_point (y_1, θ_1) : ray_at_point (y_1, θ_1) . Tay_at_poin (n,d): free_space $$\stackrel{\mathtt{def}}{\Leftrightarrow} \mathtt{y_1} = \mathtt{y_0} + \mathtt{d} * \theta_\mathtt{0} \wedge \theta_\mathtt{1} = \theta_\mathtt{0}$$ Ray transmitted at a plane interface (Snell's law) # Formalization of light as a ray (3/3) Ray in a free space is_valid_ray_at_free_space $$(y_0, \theta_0)$$ (y_1, θ_1) (n, d) $$\overset{\text{def}}{\Leftrightarrow} y_1 = y_0 + d * \theta_0 \wedge \theta_1 = \theta_0$$ Ray transmitted at a plane interface (Snell's law) is_valid_ray_at_interface (y_0, θ_0) (y_1, θ_1) n_0 n_1 plane transmitted $\overset{\text{def}}{\Leftrightarrow} \mathbf{v_1} = \mathbf{v_0} \wedge \mathbf{n_1} * \theta_1 = \mathbf{n_0} * \theta_0$ $$\theta$$ 0 y_0 y_1 # Formalization of light as a ray (3/3) Ray in a free space is_valid_ray_at_free_space $$(y_0, \theta_0)$$ (y_1, θ_1) (n, d) $$\stackrel{\text{def}}{\Leftrightarrow} y_1 = y_0 + d * \theta_0 \land \theta_1 = \theta_0$$ • Ray transmitted at a plane interface (Snell's law) is valid ray at interface (y_0, θ_0) (y_1, θ_1) n_0 n_1 plane transmitted $$\stackrel{\text{def}}{\Leftrightarrow} y_1 = y_0 \wedge n_1 * \theta_1 = n_0 * \theta_0$$ - Similar for reflected (law of reflection) - Similar for spherical interfaces ightarrow complex expression, but easy (and boring) underlying reasoning 15/28 #### Formalization of the transfer matrices - Small angle approximation - \rightarrow the mapping $y_0 \mapsto y_1$, $\theta_0 \mapsto \theta_1$ is linear #### Formalization of the transfer matrices - Small angle approximation - \rightarrow the mapping $y_0 \mapsto y_1$, $\theta_0 \mapsto \theta_1$ is linear - 2 × 2 matrix for each component $$\left[\begin{array}{c} y_1 \\ \theta_1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ \frac{n_0 - n_1}{n_1 R} & \frac{n_0}{n_1} \end{array}\right] \left[\begin{array}{c} y_0 \\ \theta_0 \end{array}\right]$$ #### Formalization of the transfer matrices - Small angle approximation \rightarrow the mapping $y_0 \mapsto y_1$, $\theta_0 \mapsto \theta_1$ is linear - 2 × 2 matrix for each component - \rightarrow example: $$\left[\begin{array}{c} y_1 \\ \theta_1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ \frac{n_0 - n_1}{n_1 R} & \frac{n_0}{n_1} \end{array}\right] \left[\begin{array}{c} y_0 \\ \theta_0 \end{array}\right]$$ Matrix multiplication ⇒ matrix for whole system #### Table of contents - 1 Topic & motivation - 2 Formalization of geometrical optics - 3 Stability of optical resonators - Conclusion & future work # Stability of optical resonators # Formal expression of stability - A resonator is stable if the ray trajectory is bounded after any number of round-trips - Amounts to say that the vector (ray, angle) is bounded even after raising the matrix of the system to any power: #### **Definition** $\vdash \forall$ M. stable_optical_system M \Leftrightarrow $\forall y, \theta. \exists B. \forall n. abs <math>\left(M^n * \begin{bmatrix} y \\ \theta \end{bmatrix}\right) \leq B$ $$(abs, \leq = component-wise)$$ # Sylvester's Theorem Key theorem providing a sufficient condition for stability: #### Theorem (Sylvester's Theorem) $$| \exists A \in \mathcal{B}$$ \exists$$ # Sylvester's Theorem Key theorem providing a sufficient condition for stability: #### Theorem (Sylvester's Theorem) # Generalized stability theorem Sylvester's theorem allows to derive a simple criterion to decide the stability of resonator: #### Theorem (Generalized Stability Theorem) $$\mid \forall \text{ A B C D.} \mid \begin{vmatrix} A & B \\ C & D \end{vmatrix} = 1 \land -1 < \frac{A+D}{2} \land \frac{A+D}{2} < 1 \Longrightarrow$$ $$\text{stable_optical_system} \left[\begin{array}{c} A & B \\ C & D \end{array} \right]$$ # **Application: Fabry Perot resonator** # Fabry Perot resonator: formalization in XZ plane Formal Model of FP Resonator in XZ Plane: #### **Definition** ``` ⊢ ∀ R dx nf df. FP_XZ R dx df nf = ([(1,0),spherical R,reflected; (1,dx),plane,transmitted; (nf,df),plane,transmitted],1,dx) ``` # Fabry Perot resonator: stability Ray-transfer matrix for one round-trip in the resonator: #### Theorem $$\vdash \forall \text{ R dx df nf.} \quad \text{R} \neq \text{O} \land \text{O} < \text{dx} \land \text{O} < \text{df} \land \text{O} < \text{nf} \\ \Longrightarrow \quad \text{system_composition (FP_XZ R dx df nf)} = \\ \begin{bmatrix} 1 - \frac{2 * (\text{df} + 2 * \text{dx} * \text{nf})}{\text{nf} * \text{R}} & 2 * \text{dx} + \frac{\text{df}}{\text{nf}} \\ -\frac{2}{\text{R}} & 1 \end{bmatrix}$$ # Fabry Perot resonator: stability Ray-transfer matrix for one round-trip in the resonator: #### Theorem $$\vdash \forall \text{ R dx df nf.} \quad \text{R} \neq \text{0} \land \text{0} < \text{dx} \land \text{0} < \text{df} \land \text{0} < \text{nf} \\ \Longrightarrow \quad \text{system_composition (FP_XZ R dx df nf)} = \\ \begin{bmatrix} 1 - \frac{2 * (\text{df} + 2 * \text{dx} * \text{nf})}{\text{nf} * \text{R}} & 2 * \text{dx} + \frac{\text{df}}{\text{nf}} \\ -\frac{2}{\text{R}} & 1 \end{bmatrix}$$ Sufficient conditions for stability: #### Theorem (Stability in XZ plane) $$\begin{array}{ll} \vdash \ \forall \ R \ dx \ df \ nf. & R \neq 0 \ \land \ 0 < dx \ \land \ 0 < df \ \land \ 0 < nf \\ 0 < \frac{2*dx + \frac{df}{nf}}{R} \ \land \ \frac{2*dx + \frac{df}{nf}}{R} < 2 \implies stable_optical_system \\ (system_composition \ (FP_XZ \ R \ dx \ df \ nf)) \end{array}$$ #### Table of contents - Topic & motivation - 2 Formalization of geometrical optics - 3 Stability of optical resonators - Conclusion & future work #### **Conclusion** #### Formalization of: - Optical systems - Behavior of light in geometric optics - Ray-transfer matrix in paraxial approximation - Stability analysis - Application to a recently developed resonator #### **Future work** - Formal treatment of small angle approximation - Derivation of Snell's law and law of reflection from Fermat's principle - Handle more complex models (e.g., misaligned components) Faculty of Engineering and Computer Science http://hvg.ece.concordia.ca # Thanks! Questions? PS: Just in case, looking for a job in Germany, preferably close to Stuttgart... ;-)